Automatic Reconnection of Linear Segments by the Minimum Description Length Principle
نویسندگان
چکیده
The automatic reconnection of linear segments is a problem often encountered in image analysis. This article proposes a procedure for performing this task. Tuning parameters of the proposed procedure can either be chosen manually, or chosen automatically by a method developed in this note. This automatic method is based on the minimum description length principle. The procedure is applied to some real images.
منابع مشابه
A New Minimum Description Length
The minimum description length(MDL) method is one of the pioneer methods of parametric order estimation with a wide range of applications. We investigate the definition of two-stage MDL for parametric linear model sets and exhibit some drawbacks of the theory behind the existing MDL. We introduce a new description length which is inspired by the Kolmogorov complexity principle.
متن کاملAttribute Value Selection Considering the Minimum Description Length Approach and Feature Granularity
In this paper we introduce a new approach to automatic attribute and granularity selection for building optimum regression trees. The method is based on the minimum description length principle (MDL) and aspects of granular computing. The approach is verified by giving an example using a data set which is extracted and preprocessed from an operational information system of the Components Toolsh...
متن کاملSegmenting by Compression Using Linear Scale-Space and Watersheds
Automatic segmentation is performed using watersheds of the gradient magnitude and compression techniques. Linear Scale-Space is used to discover the neighbourhood structure and catchment basins are locally merged with Minimum Description Length. The algorithm can form a basis for a large range of automatic segmentation algorithms based on watersheds, scale-spaces, and compression.
متن کاملRisk Minimization and Minimum Description for Linear Discriminant Functions
Statistical learning theory provides a formal criterion for learning a concept from examples. This theory addresses directly the tradeoff in empirical fit and generalization. In practice, this leads to the structural risk minimization principle where one minimizes a bound on the overall risk functional. For learning linear discriminant functions, this bound is impacted by the minimum of two ter...
متن کاملOptimization Framework with Minimum Description Length Principle for Probabilistic Programming
Application of the Minimum Description Length principle to optimization queries in probabilistic programming was investigated on the example of the C++ probabilistic programming library under development. It was shown that incorporation of this criterion is essential for optimization queries to behave similarly to more common queries performing sampling in accordance with posterior distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007